The COM-Poisson Model for Count Data: A Survey of Methods and Applications
نویسندگان
چکیده
The Poisson distribution is a popular distribution for modeling count data, yet it is constrained by its equi-dispersion assumption, making it less than ideal for modeling real data that often exhibit overor under-dispersion. The COM-Poisson distribution is a two-parameter generalization of the Poisson distribution that allows for a wide range of overand under-dispersion. It not only generalizes the Poisson distribution, but also contains the Bernoulli and geometric distributions as special cases. This distribution‟s flexibility and special properties has prompted a fast growth of methodological and applied research in various fields. This paper surveys the different COMPoisson models that have been published thus far, and their applications in areas including marketing, transportation, and biology, among others.
منابع مشابه
Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model
In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملکاربرد مدل رگرسیون پواسنی تعمیم یافته در تحلیل دادههای باروری زنان روستایی استان فارس
Background & objectives: statistical modeling explicates the observed changes in data by means of mathematics equations. In cases that dependent variable is count, Poisson model is applied. If Poisson model is not applicable in a specific situation, it is better to apply the generalized Poisson model. So, our emphasis in this study is to notice the data structure, introducing the generalized Po...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010